Primeur Online Docs
Data Shaper
Data Shaper
  • 🚀GETTING STARTED
    • What is Primeur Data Shaper
      • What is the Data Shaper Designer
      • What is the Data Shaper Server
      • What is the Data Shaper Cluster
    • How does the Data Shaper Designer work
      • Designer Views and Graphs
      • Data Shaper Graphs
      • Designer Projects and Sandboxes
      • Data Shaper Designer Reference
    • How do the Data Shaper Server and Cluster work
      • Data Shaper Server and Cluster
      • Data Shaper Server Reference
    • VFS Graph Components
      • DataOneFileDescriptor (DOFD) metadata
      • Passing parameters from Data One Contract to Data Shaper graph
      • Inheriting Data One context attributes in Data Shaper graph
  • DATA SHAPER DESIGNER
    • Configuration
      • Runtime configuration
        • Logging
        • Master Password
        • User Classpath
      • Data Shaper Server Integration
      • Execution monitoring
      • Java configuration
      • Engine configuration
      • Refresh Operation
    • Designer User Interface
      • Graph Editor with Palette of Components
      • Project Explorer Pane
      • Outline Pane
      • Tabs Pane
      • Execution Tab
      • Keyboard Shortcuts
    • Projects
      • Creating Data Shaper projects
      • Converting Data Shaper projects
      • Structure of Data Shaper projects
      • Versioning of server project content
      • Working with Data Shaper Server Projects
      • Project configuration
    • Graphs
      • Creating an empty graph
      • Creating a simple graph
        • Placing Components
        • Placing Components from Palette
        • Connecting Components with Edges
    • Execution
      • Successful Graph Execution
      • Run configuration
      • Connecting to a running job
      • Graph states
    • Common dialogs
      • URL file dialog
      • Edit Value dialog
      • Open Type dialog
    • Import
      • Import Data Shaper projects
      • Import from Data Shaper server sandbox
      • Import graphs
      • Import metadata
    • Export
      • Export graphs to HTML
      • Export to Data Shaper Server sandbox
      • Export image
      • Export Project as Library
    • Graph tracking
      • Changing record count font size
    • Search functionality
    • Working with Data Shaper server
      • Data Shaper server project basic principles
      • Connecting via HTTP
      • Connecting via HTTPS
      • Connecting via Proxy Server
    • Graph components
      • Adding components
      • Finding components
      • Edit component dialog box
      • Enable/disable component
      • Passing data through disabled component
      • Common properties of components
      • Specific attribute types
      • Metadata templates
    • Edges
      • Connecting Components with Edges
      • Types of Edges
      • Assigning Metadata to Edges
      • Colors of Edges
      • Debugging Edges
      • Edge Memory Allocation
    • Metadata
      • Records and Fields
        • Record Types
        • Data Types in Metadata
        • Data Formats
        • Locale and Locale Sensitivity
        • Time Zone
        • Autofilling Functions
      • Metadata Types
        • Internal Metadata
        • External (Shared) Metadata
        • SQL Query Metadata
        • Reading Metadata from Special Sources
      • Auto-propagated Metadata
        • Sources of Auto-Propagated Metadata
        • Explicitly Propagated Metadata
        • Priorities of Metadata
        • Propagation of SQL Query Metadata
      • Creating Metadata
        • Extracting Metadata from a Flat File
        • Extracting Metadata from an XLS(X) File
        • Extracting Metadata from a Database
        • Extracting Metadata from a DBase File
        • Extracting Metadata from Salesforce
        • SQL Query Metadata
        • User Defined Metadata
      • Merging Existing Metadata
      • Creating Database Table from Metadata and Database Connection
      • Metadata Editor
        • Opening Metadata Editor
        • Basics of Metadata Editor
        • Record Pane
        • Field Name vs. Label vs. Description
        • Details Pane
      • Changing and Defining Delimiters
      • Editing Metadata in the Source Code
      • Multi-value Fields
        • Lists and Maps Support in Components
        • Joining on multivalue fields (Comparison Rules)
    • Connections
      • Database Connections
        • Internal Database Connections
        • External (Shared) Database Connections
        • Database Connections Properties
        • Encryption of Access Password
        • Browsing Database and Extracting Metadata from Database Tables
        • Windows Authentication on Microsoft SQL Server
        • Snowflake Connection
        • Hive Connection
        • Troubleshooting
      • JMS Connections
      • QuickBase Connections
      • Hadoop Connections
      • Kafka Connections
      • OAuth2 Connections
      • MongoDB Connections
      • Salesforce Connections
    • Lookup Tables
      • Lookup Tables in Cluster Environment
      • Internal Lookup Tables
      • External (Shared) Lookup Tables
      • Types of Lookup Tables
    • Sequences
      • Persistent Sequences
      • Non Persistent Sequences
      • Internal Sequences
      • External (Shared) Sequences
      • Editing a Sequence
      • Sequences in Cluster Environment
    • Parameters
      • Internal Parameters
      • External (Shared) Parameters
      • Secure Graph Parameters
      • Graph Parameter Editor
      • Secure Graph Parameters
      • Parameters with CTL2 Expressions (Dynamic Parameters)
      • Environment Variables
      • Canonicalizing File Paths
      • Using Parameters
    • Internal/External Graph Elements
    • Dictionary
      • Creating a Dictionary
      • Using a Dictionary in Graphs
    • Execution Properties
    • Notes in Graphs
      • Placing Notes into Graph
      • Resizing Notes
      • Editing Notes
      • Formatted Text
      • Links from Notes
      • Folding Notes
      • Notes Properties
    • Transformations
      • Defining Transformations
      • Transform Editor
      • Common Java Interfaces
    • Data Partitioning (Parallel Running)
    • Data Partitioning in Cluster
      • High Availability
      • Scalability
      • Graph Allocation Examples
      • Example of Distributed Execution
      • Remote Edges
    • Readers
      • Common Properties of Readers
      • ComplexDataReader
      • DatabaseReader
      • DataGenerator
      • DataOneVFSReader
      • EDIFACTReader
      • FlatFileReader
      • JSONExtract
      • JSONReader
      • LDAPReader
      • MultiLevelReader
      • SpreadsheetDataReader
      • UniversalDataReader
      • X12Reader
      • XMLExtract
      • XMLReader
      • XMLXPathReader
    • Writers
      • Common Properties of Writers
      • DatabaseWriter
      • DataOneVFSWriter
      • EDIFACTWriter
      • FlatFileWriter
      • JSONWriter
      • LDAPWriter
      • SpreadsheetDataWriter
      • HIDDEN StructuredDataWriter
      • HIDDEN TableauWriter
      • Trash
      • UniversalDataWriter
      • X12Writer
      • XMLWriter
    • Transformers
      • Common Properties of Transformers
      • Aggregate
      • Concatenate
      • DataIntersection
      • DataSampler
      • Dedup
      • Denormalizer
      • ExtSort
      • FastSort
      • Filter
      • Map
      • Merge
      • MetaPivot
      • Normalizer
      • Partition
      • Pivot
      • Rollup
      • SimpleCopy
      • SimpleGather
      • SortWithinGroups
      • XSLTransformer
    • Joiners
      • Common Properties of Joiners
      • Combine
      • CrossJoin
      • DBJoin
      • ExtHashJoin
      • ExtMergeJoin
      • LookupJoin
      • RelationalJoin
    • Others
      • Common Properties of Others
      • CheckForeignKey
      • DBExecute
      • HTTPConnector
      • LookupTableReaderWriter
      • WebServiceClient
    • CTL2 - Data Shaper Transformation Language
    • Language Reference
      • Program Structure
      • Comments
      • Import
      • Data Types in CTL2
      • Literals
      • Variables
      • Dictionary in CTL2
      • Operators
      • Simple Statement and Block of Statements
      • Control Statements
      • Error Handling
      • Functions
      • Conditional Fail Expression
      • Accessing Data Records and Fields
      • Mapping
      • Parameters
      • Regular Expressions
    • CTL Debugging
      • Debug Perspective
      • Importing and Exporting Breakpoints
      • Inspecting Variables and Expressions
      • Examples
    • Functions Reference
      • Conversion Functions
      • Date Functions
      • Mathematical Functions
      • String Functions
      • Mapping Functions
      • Container Functions
      • Record Functions (Dynamic Field Access)
      • Miscellaneous Functions
      • Lookup Table Functions
      • Sequence Functions
      • Data Service HTTP Library Functions
      • Custom CTL Functions
      • CTL2 Appendix - List of National-specific Characters
      • HIDDEN Subgraph Functions
    • Tutorial
      • Creating a Transformation Graph
      • Filtering the records
      • Sorting the Records
      • Processing Speed-up with Parallelization
      • Debugging the Java Transformation
  • DATA SHAPER SERVER
    • Introduction
    • Administration
      • Monitoring
    • Using Graphs
      • Job Queue
      • Execution History
      • Job Inspector
    • Cluster
      • Sandboxes in Cluster
      • Troubleshooting
  • Install Data Shaper
    • Install Data Shaper
      • Introduction to Data Shaper installation process
      • Planning Data Shaper installation
      • Data Shaper System Requirements
      • Data Shaper Domain Master Configuration reference
      • Performing Data Shaper initial installation and master configuration
        • Creating database objects for PostgreSQL
        • Creating database objects for Oracle
        • Executing Data Shaper installer
        • Configuring additional firewall rules for Data Shaper
Powered by GitBook
On this page
  • What Is Data Partitioning
  • Partitioned Sandboxes
  • When to Use Data Partitioning
  • Way To Speed Up Processing
  • Designer and Server
  • Scalable Solution in Data Shaper Server and Cluster
  • How Does the Data Partitioning Work
  • Benefits of Data Partitioning
  • Things to Consider when Going Parallel
  1. DATA SHAPER DESIGNER

Data Partitioning (Parallel Running)

PreviousCommon Java InterfacesNextData Partitioning in Cluster

Last updated 1 month ago

This chapter describes way to speed up graph runs with help of data partitioning.

Note: Data partitioning is available in Data Shaper Server. It is not available in local projects.

What Is Data Partitioning

Data partitioning runs parts of graph in parallel. A component that is a bottleneck of a graph is run in multiple instances and each instance processes one part of the original data stream.

The processing can be further scaled to Cluster without modification to the graph.

Partitioned Sandboxes

When to Use Data Partitioning

Data partitioning is convenient to speed up processing when:

  • some components are significantly slower than other components in a graph.

Way To Speed Up Processing

The way to speed up the run is to partition the data and run the slow component in parallel.

Designer and Server

In Designer and Server, you can speed up processing with copying the slow component and running it in parallel.

Scalable Solution in Data Shaper Server and Cluster

There is a better solution that avoids copying components and is scalable.

Set allocation to the components positioned between the Cluster components: right click the component and choose Set Allocation.

In Component Allocation dialog choose By number of workers and enter the number of parallel workers.

Components in your graph will contain text denoting the allocation.

How Does the Data Partitioning Work

Data partitioning runs part of a graph in parallel. The number of parallel workers is configured without copying the components. Data-partitioned graphs can take advantage of Data Shaper Cluster without modification.

Benefits of Data Partitioning

  • Clean design, no duplication. Avoid copying parts of graph to speed-up the processing. Set the number of parallel workers with a single option.

  • Scales to Cluster. You can use the same graph on a multi-node Cluster without any additional modifications.

  • Maximize use of available hardware. Take advantage of parallel processing on multi-core processors.

Things to Consider when Going Parallel

  • When you run some component in parallel, you should be aware of limits of hardware and other systems.

  • If you run parallel a component that connects to a web service, you may reach the limit of parallel connections to the service or run out of the quota on number of requests.

  • Consider other jobs running on server. Too many jobs running in parallel may slow down run of other graphs.

  • Some tasks cannot be easily parallelized.

In , you can partition files with temporary data to multiple Cluster nodes using Partitioned sandboxes. A file stored in a partitioned sandbox is split into several parts. Each part of the file is on a different Cluster node. This way, you can partition both: processing and data. It reduces amount of data being transferred between Cluster nodes.

components communicate over the network with high latency (, );

If you run parallel a component that does many I/O operations (e.g ), you may be limited by speed of hard drive.

If you run parallel a component that opens many files (e.g ), you may reach limit on number of opened files.

Data Shaper Cluster
HTTPConnector
WebServiceClient
FastSort
FastSort